3.3.39 \(\int \frac {(b x+c x^2)^2}{(d+e x)^4} \, dx\) [239]

Optimal. Leaf size=120 \[ \frac {c^2 x}{e^4}-\frac {d^2 (c d-b e)^2}{3 e^5 (d+e x)^3}+\frac {d (c d-b e) (2 c d-b e)}{e^5 (d+e x)^2}-\frac {6 c^2 d^2-6 b c d e+b^2 e^2}{e^5 (d+e x)}-\frac {2 c (2 c d-b e) \log (d+e x)}{e^5} \]

[Out]

c^2*x/e^4-1/3*d^2*(-b*e+c*d)^2/e^5/(e*x+d)^3+d*(-b*e+c*d)*(-b*e+2*c*d)/e^5/(e*x+d)^2+(-b^2*e^2+6*b*c*d*e-6*c^2
*d^2)/e^5/(e*x+d)-2*c*(-b*e+2*c*d)*ln(e*x+d)/e^5

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {712} \begin {gather*} -\frac {b^2 e^2-6 b c d e+6 c^2 d^2}{e^5 (d+e x)}-\frac {d^2 (c d-b e)^2}{3 e^5 (d+e x)^3}+\frac {d (c d-b e) (2 c d-b e)}{e^5 (d+e x)^2}-\frac {2 c (2 c d-b e) \log (d+e x)}{e^5}+\frac {c^2 x}{e^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(b*x + c*x^2)^2/(d + e*x)^4,x]

[Out]

(c^2*x)/e^4 - (d^2*(c*d - b*e)^2)/(3*e^5*(d + e*x)^3) + (d*(c*d - b*e)*(2*c*d - b*e))/(e^5*(d + e*x)^2) - (6*c
^2*d^2 - 6*b*c*d*e + b^2*e^2)/(e^5*(d + e*x)) - (2*c*(2*c*d - b*e)*Log[d + e*x])/e^5

Rule 712

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d +
 e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*
e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && IntegerQ[p] && (GtQ[p, 0] || (EqQ[a, 0] && IntegerQ[m]))

Rubi steps

\begin {align*} \int \frac {\left (b x+c x^2\right )^2}{(d+e x)^4} \, dx &=\int \left (\frac {c^2}{e^4}+\frac {d^2 (c d-b e)^2}{e^4 (d+e x)^4}+\frac {2 d (c d-b e) (-2 c d+b e)}{e^4 (d+e x)^3}+\frac {6 c^2 d^2-6 b c d e+b^2 e^2}{e^4 (d+e x)^2}-\frac {2 c (2 c d-b e)}{e^4 (d+e x)}\right ) \, dx\\ &=\frac {c^2 x}{e^4}-\frac {d^2 (c d-b e)^2}{3 e^5 (d+e x)^3}+\frac {d (c d-b e) (2 c d-b e)}{e^5 (d+e x)^2}-\frac {6 c^2 d^2-6 b c d e+b^2 e^2}{e^5 (d+e x)}-\frac {2 c (2 c d-b e) \log (d+e x)}{e^5}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.04, size = 134, normalized size = 1.12 \begin {gather*} \frac {-b^2 e^2 \left (d^2+3 d e x+3 e^2 x^2\right )+b c d e \left (11 d^2+27 d e x+18 e^2 x^2\right )+c^2 \left (-13 d^4-27 d^3 e x-9 d^2 e^2 x^2+9 d e^3 x^3+3 e^4 x^4\right )-6 c (2 c d-b e) (d+e x)^3 \log (d+e x)}{3 e^5 (d+e x)^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(b*x + c*x^2)^2/(d + e*x)^4,x]

[Out]

(-(b^2*e^2*(d^2 + 3*d*e*x + 3*e^2*x^2)) + b*c*d*e*(11*d^2 + 27*d*e*x + 18*e^2*x^2) + c^2*(-13*d^4 - 27*d^3*e*x
 - 9*d^2*e^2*x^2 + 9*d*e^3*x^3 + 3*e^4*x^4) - 6*c*(2*c*d - b*e)*(d + e*x)^3*Log[d + e*x])/(3*e^5*(d + e*x)^3)

________________________________________________________________________________________

Maple [A]
time = 0.46, size = 134, normalized size = 1.12

method result size
norman \(\frac {\frac {c^{2} x^{4}}{e}-\frac {d^{2} \left (b^{2} e^{2}-11 b c d e +22 d^{2} c^{2}\right )}{3 e^{5}}-\frac {\left (b^{2} e^{2}-6 b c d e +12 d^{2} c^{2}\right ) x^{2}}{e^{3}}-\frac {d \left (b^{2} e^{2}-9 b c d e +18 d^{2} c^{2}\right ) x}{e^{4}}}{\left (e x +d \right )^{3}}+\frac {2 c \left (b e -2 c d \right ) \ln \left (e x +d \right )}{e^{5}}\) \(130\)
default \(\frac {c^{2} x}{e^{4}}+\frac {d \left (b^{2} e^{2}-3 b c d e +2 d^{2} c^{2}\right )}{e^{5} \left (e x +d \right )^{2}}-\frac {b^{2} e^{2}-6 b c d e +6 d^{2} c^{2}}{e^{5} \left (e x +d \right )}+\frac {2 c \left (b e -2 c d \right ) \ln \left (e x +d \right )}{e^{5}}-\frac {d^{2} \left (b^{2} e^{2}-2 b c d e +d^{2} c^{2}\right )}{3 e^{5} \left (e x +d \right )^{3}}\) \(134\)
risch \(\frac {c^{2} x}{e^{4}}+\frac {\left (-e^{3} b^{2}+6 d \,e^{2} b c -6 d^{2} e \,c^{2}\right ) x^{2}-d \left (b^{2} e^{2}-9 b c d e +10 d^{2} c^{2}\right ) x -\frac {d^{2} \left (b^{2} e^{2}-11 b c d e +13 d^{2} c^{2}\right )}{3 e}}{e^{4} \left (e x +d \right )^{3}}+\frac {2 c \ln \left (e x +d \right ) b}{e^{4}}-\frac {4 c^{2} d \ln \left (e x +d \right )}{e^{5}}\) \(136\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x)^2/(e*x+d)^4,x,method=_RETURNVERBOSE)

[Out]

c^2*x/e^4+d/e^5*(b^2*e^2-3*b*c*d*e+2*c^2*d^2)/(e*x+d)^2-1/e^5*(b^2*e^2-6*b*c*d*e+6*c^2*d^2)/(e*x+d)+2/e^5*c*(b
*e-2*c*d)*ln(e*x+d)-1/3*d^2*(b^2*e^2-2*b*c*d*e+c^2*d^2)/e^5/(e*x+d)^3

________________________________________________________________________________________

Maxima [A]
time = 0.33, size = 151, normalized size = 1.26 \begin {gather*} c^{2} x e^{\left (-4\right )} - 2 \, {\left (2 \, c^{2} d - b c e\right )} e^{\left (-5\right )} \log \left (x e + d\right ) - \frac {13 \, c^{2} d^{4} - 11 \, b c d^{3} e + b^{2} d^{2} e^{2} + 3 \, {\left (6 \, c^{2} d^{2} e^{2} - 6 \, b c d e^{3} + b^{2} e^{4}\right )} x^{2} + 3 \, {\left (10 \, c^{2} d^{3} e - 9 \, b c d^{2} e^{2} + b^{2} d e^{3}\right )} x}{3 \, {\left (x^{3} e^{8} + 3 \, d x^{2} e^{7} + 3 \, d^{2} x e^{6} + d^{3} e^{5}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^2/(e*x+d)^4,x, algorithm="maxima")

[Out]

c^2*x*e^(-4) - 2*(2*c^2*d - b*c*e)*e^(-5)*log(x*e + d) - 1/3*(13*c^2*d^4 - 11*b*c*d^3*e + b^2*d^2*e^2 + 3*(6*c
^2*d^2*e^2 - 6*b*c*d*e^3 + b^2*e^4)*x^2 + 3*(10*c^2*d^3*e - 9*b*c*d^2*e^2 + b^2*d*e^3)*x)/(x^3*e^8 + 3*d*x^2*e
^7 + 3*d^2*x*e^6 + d^3*e^5)

________________________________________________________________________________________

Fricas [A]
time = 1.25, size = 233, normalized size = 1.94 \begin {gather*} -\frac {13 \, c^{2} d^{4} - 3 \, {\left (c^{2} x^{4} - b^{2} x^{2}\right )} e^{4} - 3 \, {\left (3 \, c^{2} d x^{3} + 6 \, b c d x^{2} - b^{2} d x\right )} e^{3} + {\left (9 \, c^{2} d^{2} x^{2} - 27 \, b c d^{2} x + b^{2} d^{2}\right )} e^{2} + {\left (27 \, c^{2} d^{3} x - 11 \, b c d^{3}\right )} e + 6 \, {\left (2 \, c^{2} d^{4} - b c x^{3} e^{4} + {\left (2 \, c^{2} d x^{3} - 3 \, b c d x^{2}\right )} e^{3} + 3 \, {\left (2 \, c^{2} d^{2} x^{2} - b c d^{2} x\right )} e^{2} + {\left (6 \, c^{2} d^{3} x - b c d^{3}\right )} e\right )} \log \left (x e + d\right )}{3 \, {\left (x^{3} e^{8} + 3 \, d x^{2} e^{7} + 3 \, d^{2} x e^{6} + d^{3} e^{5}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^2/(e*x+d)^4,x, algorithm="fricas")

[Out]

-1/3*(13*c^2*d^4 - 3*(c^2*x^4 - b^2*x^2)*e^4 - 3*(3*c^2*d*x^3 + 6*b*c*d*x^2 - b^2*d*x)*e^3 + (9*c^2*d^2*x^2 -
27*b*c*d^2*x + b^2*d^2)*e^2 + (27*c^2*d^3*x - 11*b*c*d^3)*e + 6*(2*c^2*d^4 - b*c*x^3*e^4 + (2*c^2*d*x^3 - 3*b*
c*d*x^2)*e^3 + 3*(2*c^2*d^2*x^2 - b*c*d^2*x)*e^2 + (6*c^2*d^3*x - b*c*d^3)*e)*log(x*e + d))/(x^3*e^8 + 3*d*x^2
*e^7 + 3*d^2*x*e^6 + d^3*e^5)

________________________________________________________________________________________

Sympy [A]
time = 0.74, size = 163, normalized size = 1.36 \begin {gather*} \frac {c^{2} x}{e^{4}} + \frac {2 c \left (b e - 2 c d\right ) \log {\left (d + e x \right )}}{e^{5}} + \frac {- b^{2} d^{2} e^{2} + 11 b c d^{3} e - 13 c^{2} d^{4} + x^{2} \left (- 3 b^{2} e^{4} + 18 b c d e^{3} - 18 c^{2} d^{2} e^{2}\right ) + x \left (- 3 b^{2} d e^{3} + 27 b c d^{2} e^{2} - 30 c^{2} d^{3} e\right )}{3 d^{3} e^{5} + 9 d^{2} e^{6} x + 9 d e^{7} x^{2} + 3 e^{8} x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x)**2/(e*x+d)**4,x)

[Out]

c**2*x/e**4 + 2*c*(b*e - 2*c*d)*log(d + e*x)/e**5 + (-b**2*d**2*e**2 + 11*b*c*d**3*e - 13*c**2*d**4 + x**2*(-3
*b**2*e**4 + 18*b*c*d*e**3 - 18*c**2*d**2*e**2) + x*(-3*b**2*d*e**3 + 27*b*c*d**2*e**2 - 30*c**2*d**3*e))/(3*d
**3*e**5 + 9*d**2*e**6*x + 9*d*e**7*x**2 + 3*e**8*x**3)

________________________________________________________________________________________

Giac [A]
time = 0.60, size = 131, normalized size = 1.09 \begin {gather*} c^{2} x e^{\left (-4\right )} - 2 \, {\left (2 \, c^{2} d - b c e\right )} e^{\left (-5\right )} \log \left ({\left | x e + d \right |}\right ) - \frac {{\left (13 \, c^{2} d^{4} - 11 \, b c d^{3} e + b^{2} d^{2} e^{2} + 3 \, {\left (6 \, c^{2} d^{2} e^{2} - 6 \, b c d e^{3} + b^{2} e^{4}\right )} x^{2} + 3 \, {\left (10 \, c^{2} d^{3} e - 9 \, b c d^{2} e^{2} + b^{2} d e^{3}\right )} x\right )} e^{\left (-5\right )}}{3 \, {\left (x e + d\right )}^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^2/(e*x+d)^4,x, algorithm="giac")

[Out]

c^2*x*e^(-4) - 2*(2*c^2*d - b*c*e)*e^(-5)*log(abs(x*e + d)) - 1/3*(13*c^2*d^4 - 11*b*c*d^3*e + b^2*d^2*e^2 + 3
*(6*c^2*d^2*e^2 - 6*b*c*d*e^3 + b^2*e^4)*x^2 + 3*(10*c^2*d^3*e - 9*b*c*d^2*e^2 + b^2*d*e^3)*x)*e^(-5)/(x*e + d
)^3

________________________________________________________________________________________

Mupad [B]
time = 0.23, size = 158, normalized size = 1.32 \begin {gather*} \frac {c^2\,x}{e^4}-\frac {x^2\,\left (b^2\,e^3-6\,b\,c\,d\,e^2+6\,c^2\,d^2\,e\right )+\frac {b^2\,d^2\,e^2-11\,b\,c\,d^3\,e+13\,c^2\,d^4}{3\,e}+x\,\left (b^2\,d\,e^2-9\,b\,c\,d^2\,e+10\,c^2\,d^3\right )}{d^3\,e^4+3\,d^2\,e^5\,x+3\,d\,e^6\,x^2+e^7\,x^3}-\frac {\ln \left (d+e\,x\right )\,\left (4\,c^2\,d-2\,b\,c\,e\right )}{e^5} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x + c*x^2)^2/(d + e*x)^4,x)

[Out]

(c^2*x)/e^4 - (x^2*(b^2*e^3 + 6*c^2*d^2*e - 6*b*c*d*e^2) + (13*c^2*d^4 + b^2*d^2*e^2 - 11*b*c*d^3*e)/(3*e) + x
*(10*c^2*d^3 + b^2*d*e^2 - 9*b*c*d^2*e))/(d^3*e^4 + e^7*x^3 + 3*d^2*e^5*x + 3*d*e^6*x^2) - (log(d + e*x)*(4*c^
2*d - 2*b*c*e))/e^5

________________________________________________________________________________________